skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Van Veen, Barry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundRecent engineering education research has found improved learning outcomes when instructors engage students actively (e.g., through practice problems) rather than passively (e.g., in lectures). As more instructors shift toward active learning, research needs to identify how different types of activities affect students' cognitive engagement with concepts in the classroom. In this study, we investigate the effects of prompting novice students to draw when solving problems, a professional practice of engineers. PurposeWe investigate whether implementing instructional prompts to draw in an active learning classroom (a) increases students' use and value of drawing as a problem‐solving strategy and (b) enhances students' problem‐solving performance. MethodWe compared survey data and exam scores collected in one undergraduate class that received prompts to draw in video lectures and in‐class problems (drawing condition) and one class that received no drawing prompts (control condition). ResultsAfter drawing prompts were implemented, students' use and value of drawing increased, and these effects persisted to the end of the semester. Students were more likely to draw when provided drawing prompts. Furthermore, students who received prompts outperformed students who did not on exam questions that target conceptual understanding. ConclusionsOur findings reveal how implementing drawing prompts in an active learning classroom may help students engage in drawing and solve problems conceptually. This study contributes to our understanding of what types of active learning activities can improve instructional practices in engineering education. Particularly, we show how prompts that foster authentic engineering practices can increase cognitive engagement in introductory‐level engineering courses. 
    more » « less